Research
  Key Laboratories
  Research Divisions
  Research Interests
  Supporting System
  Achievements
  Research Progress
  Research Programs
  Technology Transfer
    Location: Home > Research > Research Progress

Photostimulated BaSi2O5:Eu2+,Nd3+ Phosphor-in-glass Developed as Erasable-rewritable Optical Storage Medium

Upon irradiating by short-wavelength photons, the photostimulated luminescence materials can capture the created charged carriers in traps, and then release the stored carriers via long-wavelength light stimulation. To further develop this kind of optical storage materials, to improve sotorage density, enhance signal persistence, increase erasable stability and reduce the cost, are the key factors. 

In the study published in Laser & Photonics Reviews, the research group led by Prof. WANG Yuansheng and Prof. LIN Hang from Fujian Institute of Research on the Structure of Matter (FJIRSM) of Chinese Academy of Sciences reported a novel multidimensional erasable optical storage material, i.e., BaSi2O5: Eu2+, Nd3+ phosphor-in-glass (PiG).

To show the application potential in optical storage, researchers encoded the graphic patterns, bar code, quick response code and binary data into BaSi2O5: Eu2+, Nd3+ PiG by ultraviolet light (350 nm) and decoded them by near-infrared light (808 nm).

The prepared BaSi2O5: Eu2+, Nd3+ PiG can achieve intensity-multiplexing by changing the power of the laser to expand the storage dimension.

Furthermore, the experimental results of a series of thermoluminescence spectrum reveal the existence of the narrowly-distributed deep traps (depth of 1.29 eV, full width at half maximum of 0.16 eV). This character resulted in the wonderful photostimulated luminescence performance and good signal persistence.
Thanks to the excellent chemical stability and ultraviolet resistance of the glass matrix, this material owns the advantages of stable optical signal, erasable writing, and long service life.
This study will promote the development of novel photostimulated luminescence material and their applications in optical storage.

 

 

The mechanism and performance of photostimulated luminescence via thermal or NIR laser excitation. (Image by Prof. WANG’s Group)

 

Contact:

Prof. WANG Yuansheng

Fujian Institute of Research on the Structure of Matter

Chinese Academy of Sciences

Email: yswang@fjirsm.ac.cn

 


Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
Address: 155 Yangqiao Road West,Fuzhou,350002,P.R.China Tel: 0591-83714517 Fax: 0591-83714946 E-mail: fjirsm@fjirsm.ac.cn
Copyright @ 2000-2009 fjirsm. All rights reserved.